Nanoparticle-mediated intervalence transfer.

نویسندگان

  • Wei Chen
  • Shaowei Chen
  • Feizhi Ding
  • Haobin Wang
  • Lauren E Brown
  • Joseph P Konopelski
چکیده

Nanoparticle-mediated intervalence transfer was reported with ferrocene moieties that were attached onto the ruthenium nanoparticle surface by ruthenium-carbene pi bonds. The resulting particles exhibited two pairs of voltammetric waves with a potential spacing of about 200 mV and a rather intense absorption peak in the near-infrared range (approximately 1930 nm) at mixed valence. Both features suggested Class II characteristics of the intraparticle intervalence transfer that mainly arose from through-bond interactions between the metal centers. Quantum calculations based on density functional theory showed that the nanoparticle core electrons served as conducting band states for the effective charge delocalization between particle-bound ferrocene moieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle-Mediated Intervalence Charge Transfer: Core-Size Effects.

Two types of platinum nanoparticles (NPs) functionalized with ethynylferrocene were prepared. The subnanometer-sized NPs (Pt10eFc) showed semiconductor-like characteristics with a bandgap of about 1.0 eV, and the other was metal-like with a core size of about 2 nm (Pt314eFc) and no significant bandgap. IR spectroscopic measurements showed a clear red-shift of the C≡C and ferrocenyl ring =C-H vi...

متن کامل

Computational Study of Bridge-mediated Intervalence Electron Transfer. Ii. Couplings in Different Metallocene Complexes

The constrained density functional theory (CDFT) was used to study bridge-mediated electron transfer processes in mixed-valence systems with two identical metallocene (cobaltocene, ruthenocene, and nickelocene) moieties linked by various bridge structures. Based on the electronic coupling matrix elements obtained from the CDFT calculations, the relationship between the bridge linkage and the e®...

متن کامل

Computational study of bridge-assisted intervalence electron transfer.

Intervalence electron transfer reactions were studied computationally by means of density functional theory and constrained density functional theory (CDFT). Two ferrocene moieties, connected via various bridge structures, were used as model mixed-valence compounds in the computational investigation. Features of the frontier orbitals were analyzed to offer a qualitative account of the intervale...

متن کامل

Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates.

Stable ruthenium nanoparticles protected by ferrocenecarboxylates (RuFCA) were synthesized by thermolytic reduction of RuCl3 in 1,2-propanediol. The resulting particles exhibited an average core diameter of 1.22 ± 0.23 nm, as determined by TEM measurements. FTIR and (1)H NMR spectroscopic measurements showed that the ligands were bound onto the nanoparticle surface via Ru-O bonds in a bidentate...

متن کامل

Contributions of symmetric and asymmetric normal coordinates to the intervalence electronic absorption and resonance Raman spectra of a strongly coupled p-phenylenediamine radical cation.

Resonance Raman spectroscopy, electronic absorption spectroscopy, and the time-dependent theory of spectroscopy are used to analyze the intervalence electron transfer properties of a strongly delocalized class III molecule, the tetraalkyl-p-phenylene diamine radical cation bis(3-oxo-9-azabicyclo[3.3.1]non-9-yl)benzene ((k33)(2)PD(+)). This molecule is a prototypical system for strongly coupled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 36  شماره 

صفحات  -

تاریخ انتشار 2008